语音识别技术,目标是将人类的语音中的词汇内容转换为计算机可读的输入。
工作原理:
动态时间伸缩方法使用瞬间的、变动倒频通过交换字母顺序,用一个含义广泛的词汇定义了一个新的信号处理技术,倒频谱的计算通常使用快速傅立叶变换。
运用隐马尔可夫模型的方法,频谱特征的统计变差得以测量。文本无关语音识别方法的例子有平均频谱法、矢量量化法和多变量自回归法。
语音识别技术,目标是将人类的语音中的词汇内容转换为计算机可读的输入。
工作原理:
动态时间伸缩方法使用瞬间的、变动倒频通过交换字母顺序,用一个含义广泛的词汇定义了一个新的信号处理技术,倒频谱的计算通常使用快速傅立叶变换。
运用隐马尔可夫模型的方法,频谱特征的统计变差得以测量。文本无关语音识别方法的例子有平均频谱法、矢量量化法和多变量自回归法。
0 留言