偏导数的求法:
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
偏导数的意义:
在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定。偏导数在向量分析和微分几何中是很有用的。
偏导数的求法:
按偏导数的定义,将多元函数关于一个自变量求偏导数时,就将其余的自变量看成常数,此时他的求导方法与一元函数导数的求法是一样的。
偏导数的意义:
在数学中,一个多变量的函数的偏导数,就是它关于其中一个变量的导数而保持其他变量恒定。偏导数在向量分析和微分几何中是很有用的。
0 留言